الانعكاس (بالإنجليزية: Reflection أو Reflexion) في الرياضيات هي دالة التي تحول شكل ما إلى صورة مرآته (المعكوسة). فمثلا، انعكاس شكل الحرف "p" بالنسبة لخط أفقي (أو مرآة) يصبح بالشكل "q". لعكس مسطح ثنائي الأبعاد، يستعمل خط كمرآة ويُسمى محور الانعكاس (axis of Reflection), بينما يلزم لانعكاس جسم ثلاثي الأبعاد مثل القطة مستوى ثنائي الأبعاد مرآة. ويعتبر الانعكاس في بعض الأحيان حالة خاصة من حالات الانقلاب (inversion).
وبالمفهوم الهندسي، لإيجاد الانعكاس لنقطة ما، يتم إسقاط خط عمودي على الخط (أو المستوى) المستعمل كمحور الانعكاس ، ثم مد الخط بشكل مستقيم في الجهة الأخرى من المحور وبنفس المسافة.
ولتحديد الانعكاس لرسم ما، يتم تحديد انعكاسات كل النقاط المؤلفة له على الناحية الأخرى من محور الانعكاس.
ملاحظات//
القيام بانعكاس مرتين على نفس المحور يعود بنا إلى الشكل الأصلي.
الانعكاس يحافظ على المسافات بين النقاط المعكوسة.
أن الانعكاس لا يؤثر على النقاط الموجودة على المرآة أو على المحور.
بعد الانعكاس في المرآة يكون أصغر ببعد واحد من الفضاء المعكوس (مثلاً إذا كانت المرآة موجودة في الفضاء الثلاثي الأبعاد فإن الصورة المعكوسة عليها تكون في الفضاء الثنائي الأبعاد وهكذا).
ومن هذه الملاحظات يمكننا تعريف الانعكاس كالآتي:
الانعكاس هو دالة معكوسة نفسها متساوية الأبعاد لفضاء إقليدي بحيث نقاطها الثابتة هي فضاء أفيني كودي
وبالمفهوم الهندسي، لإيجاد الانعكاس لنقطة ما، يتم إسقاط خط عمودي على الخط (أو المستوى) المستعمل كمحور الانعكاس ، ثم مد الخط بشكل مستقيم في الجهة الأخرى من المحور وبنفس المسافة.
ولتحديد الانعكاس لرسم ما، يتم تحديد انعكاسات كل النقاط المؤلفة له على الناحية الأخرى من محور الانعكاس.
ملاحظات//
القيام بانعكاس مرتين على نفس المحور يعود بنا إلى الشكل الأصلي.
الانعكاس يحافظ على المسافات بين النقاط المعكوسة.
أن الانعكاس لا يؤثر على النقاط الموجودة على المرآة أو على المحور.
بعد الانعكاس في المرآة يكون أصغر ببعد واحد من الفضاء المعكوس (مثلاً إذا كانت المرآة موجودة في الفضاء الثلاثي الأبعاد فإن الصورة المعكوسة عليها تكون في الفضاء الثنائي الأبعاد وهكذا).
ومن هذه الملاحظات يمكننا تعريف الانعكاس كالآتي:
الانعكاس هو دالة معكوسة نفسها متساوية الأبعاد لفضاء إقليدي بحيث نقاطها الثابتة هي فضاء أفيني كودي